Exponentiation
创始人
2024-04-27 20:48:05
0

Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent or power n, and pronounced as “b (raised) to the (power of) n”.[1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:[1]

{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}
The exponent is usually shown as a superscript to the right of the base. In that case, bn is called “b raised to the nth power”, “b (raised) to the power of n”, “the nth power of b”, “b to the nth power”,[2] or most briefly as “b to the nth”.

Starting from the basic fact stated above that, for any positive integer {\displaystyle n}n, {\displaystyle b{n}}b{n} is {\displaystyle n}n occurrences of {\displaystyle b}b all multiplied by each other, several other properties of exponentiation directly follow. In particular:

{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}
In other words, when multiplying a base raised to one exponent by the same base raised to another exponent, the exponents add. From this basic rule that exponents add, we can derive that {\displaystyle b{0}}b{0} must be equal to 1, as follows. For any {\displaystyle n}n, {\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}{\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}. Dividing both sides by {\displaystyle b{n}}b{n} gives {\displaystyle b{0}=b{n}/b^{n}=1}{\displaystyle b{0}=b{n}/b^{n}=1}.

The fact that {\displaystyle b{1}=b}b{1}=b can similarly be derived from the same rule. For example, {\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}{\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}. Taking the cube root of both sides gives {\displaystyle b{1}=b}b{1}=b.

The rule that multiplying makes exponents add can also be used to derive the properties of negative integer exponents. Consider the question of what {\displaystyle b{-1}}b{-1} should mean. In order to respect the “exponents add” rule, it must be the case that {\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}{\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}. Dividing both sides by {\displaystyle b^{1}}{\displaystyle b^{1}} gives {\displaystyle b{-1}=1/b{1}}{\displaystyle b{-1}=1/b{1}}, which can be more simply written as {\displaystyle b^{-1}=1/b}{\displaystyle b^{-1}=1/b}, using the result from above that {\displaystyle b{1}=b}b{1}=b. By a similar argument, {\displaystyle b{-n}=1/b{n}}{\displaystyle b{-n}=1/b{n}}.

The properties of fractional exponents also follow from the same rule. For example, suppose we consider {\displaystyle {\sqrt {b}}}\sqrt{b} and ask if there is some suitable exponent, which we may call {\displaystyle r}r, such that {\displaystyle b^{r}={\sqrt {b}}}{\displaystyle b^{r}={\sqrt {b}}}. From the definition of the square root, we have that {\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}{\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}. Therefore, the exponent {\displaystyle r}r must be such that {\displaystyle b^{r}\cdot b^{r}=b}{\displaystyle b^{r}\cdot b^{r}=b}. Using the fact that multiplying makes exponents add gives {\displaystyle b^{r+r}=b}{\displaystyle b^{r+r}=b}. The {\displaystyle b}b on the right-hand side can also be written as {\displaystyle b^{1}}{\displaystyle b^{1}}, giving {\displaystyle b{r+r}=b{1}}{\displaystyle b{r+r}=b{1}}. Equating the exponents on both sides, we have {\displaystyle r+r=1}{\displaystyle r+r=1}. Therefore, {\displaystyle r={\frac {1}{2}}}r={\frac {1}{2}}, so {\displaystyle {\sqrt {b}}=b^{1/2}}{\displaystyle {\sqrt {b}}=b^{1/2}}.

The definition of exponentiation can be extended to allow any real or complex exponent. Exponentiation by integer exponents can also be defined for a wide variety of algebraic structures, including matrices.

Exponentiation is used extensively in many fields, including economics, biology, chemistry, physics, and computer science, with applications such as compound interest, population growth, chemical reaction kinetics, wave behavior, and public-key cryptography.

在这里插入图片描述

Graphs of y = bx for various bases b: base 10, base e, base 2, base
1
/
2
. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

Contents
1 History of the notation
2 Terminology
3 Integer exponents
3.1 Positive exponents
3.2 Zero exponent
3.3 Negative exponents
3.4 Identities and properties
3.5 Powers of a sum
3.6 Combinatorial interpretation
3.7 Particular bases
3.7.1 Powers of ten
3.7.2 Powers of two
3.7.3 Powers of one
3.7.4 Powers of zero
3.7.5 Powers of negative one
3.8 Large exponents
3.9 Power functions
3.10 Table of powers of decimal digits
4 Rational exponents
5 Real exponents
5.1 Limits of rational exponents
5.2 The exponential function
5.3 Powers via logarithms
6 Complex exponents with a positive real base
7 Non-integer powers of complex numbers
7.1 nth roots of a complex number
7.1.1 Roots of unity
7.2 Complex exponentiation
7.2.1 Principal value
7.2.2 Multivalued function
7.2.3 Computation
7.2.3.1 Examples
7.2.4 Failure of power and logarithm identities
8 Irrationality and transcendence
9 Integer powers in algebra
9.1 In a group
9.2 In a ring
9.3 Matrices and linear operators
9.4 Finite fields
10 Powers of sets
10.1 Sets as exponents
10.2 In category theory
11 Repeated exponentiation
12 Limits of powers
13 Efficient computation with integer exponents
14 Iterated functions
15 In programming languages
16 See also

相关内容

热门资讯

茅台称尽最大努力防止价格炒作,... 备受关注的茅台2026年全国经销商联谊会于12月28日下午举行。2025年在经历了换帅,一年内飞天茅...
原创 清... 1911年10月10日晚,武昌城头的枪声划破夜空。起义军用的两众枪,是从湖北新军军械库里抢来的;而对...
无锡律师行业前景与老律师经验传... 在无锡、常州、苏州、镇江、南通等地,律师行业正展现出蓬勃的发展态势,无锡律师行业前景更是备受瞩目。随...
南京市廉政文化研究会应邀赴西安... 扬子晚报网12月28日讯(通讯员 杨雅舒 邵加宝 记者 闫春旭)12月28日,由陕西省廉政文化研究会...
北京放宽购房门槛,优化住房信贷...   为更好满足居民刚性和多样化改善性住房需求,北京进一步优化调整房地产相关政策。   12月24日,...
刘百奇:政策与市场双轮驱动——... 12月28日,由创业黑马主办的“第17届创业家年会”在北京举办,年会主题为“智业革命 —— 跨越断层...
原创 郑... 自从被曝与前夫张恒在国外合开代孕机构之后,郑爽突然又活跃了起来,舆论都过去了,以郑爽名义成立的几个账...
成都警方通报燃爆事件:段某因纠... 2025年12月28日,成都市公安局高新区分局发布警情通报: 来源:成都公安
原创 从... 古代传统婚姻讲究“聘则为妻,奔则为妾”,这句话出自《礼记.内则》,将妻和妾的关系区分的很明白。娶妻不...
成都警方:一男子因纠纷引发燃爆... 12月28日,成都市公安局高新区分局发布警情通报: 12月28日下午,我区南三环路四段一汽车销售服务...