使用Resnet网络对人脸图像分类识别出男女性别(包含数据集制作+训练+测试)
创始人
2024-04-10 11:57:32
0

文章目录

  • 前言
  • 一、数据预处理
    • 1.分类数据存放
    • 2.生成train.txt与val.txt
  • 二、更改配置文件
    • 1.自定义修改
  • 三、定义resnet网络
  • 四、train.py训练
  • 五、预测predict.py实现
  • 六、预测结果
  • 七、完整项目代码+数据集(大于1500张)
  • 总结


前言

本打算昨天写这篇博客的,推迟到今天晚上。实际上,上午我已经把模型训练完了,迭代100次,最后准确率可达到95%,考虑到用的台式机没有装显卡,所以使用的数据集一共只有340张。分布情况如下。
【训练集】女性:150张; 男性:150张
【验证集】女性:20张; 男性:20张
数据集预览
女性训练集数据
女性数据
在这里插入图片描述
男性数据


提示:以下是本篇文章正文内容,下面案例可供参考

一、数据预处理

1.分类数据存放

分类数据是不需要像目标检测数据样,每张图片去打标签,我们唯一需要做的就是把同类照片放到一个文件夹。如我们新建一个名字为“0”的文件夹,用于存放所有用于训练的150张女性图片,新建一个名字为“1”的文件夹,用于存放所有用于训练的150张男性图片。同理,验证集也如此排布。如下图所示,为我的数据排布情况,数据集存放在gender_data文件夹里。
在这里插入图片描述

2.生成train.txt与val.txt

图片数据排布完后,还需要做的就是使用脚本工具,分别生成训练集和验证集的存储路径及对应标签(0或者1)。这一步至关重要,必不可少。因为训练时,就是通过读取这两个txt文件里的路径,来读取训练集和验证集的图片,并输送给网络,同时给对应的标签类别。
脚本命名Build_all_classes_path_to_txt.py
**注意:**需要分两次执行,分别创建train.txt与val.txt,记得更改路径

import os
import os.pathdef listfiles(rootDir, txtfile, foldnam =''):ftxtfile = open(txtfile, 'a')list_dirs = os.walk(rootDir)#foldnam = FolderName[0]#print(foldnam)count = 0dircount = 0for root,dirs,files in list_dirs:for d in dirs:#print(os.path.join(root, d))dircount += 1for f in files:#print(os.path.join(root, f))ftxtfile.write(os.path.join(root, f) + ' ' + foldnam + '\n')count += 1#print(rootDir + ' has ' + str(count) + ' files')#获取路径下所有文件夹的完整路径,用于读取文件用  
def GetFileFromThisRootDir(dir):allfolder = []folder_name = ''for root,dirs,files in os.walk(dir):allfolder.append(root)"""for filespath in files:filepath = os.path.join(root, filespath)#print(filepath)extension = os.path.splitext(filepath)[1][1:]if needExtFilter and extension in ext:allfiles.append(filepath)elif not needExtFilter:allfiles.append(filepath)            """All_folder = allfolder#print(All_folder)for folder_num in All_folder[1:]:#print(folder_num)folder_name = folder_num.split('/')[:]print (folder_name)listfiles(folder_num, txtfile_path, folder_name[-1])return#def Generate_path_to_txt(FolderPath=[]):
#    print(FolderPath)if __name__=='__main__':folder_path = 'F:/Study_code/classification-pytorch/Classification-MaleFemale-pytorch/gender_data/val/'              #val and train foldertxtfile_path = 'F:/Study_code/classification-pytorch/Classification-MaleFemale-pytorch/gender_data/val.txt'folder_path = GetFileFromThisRootDir(folder_path)

生成的.txt文件内容如下
在这里插入图片描述

二、更改配置文件

1.自定义修改

实际上很多可以修改,如loss选择、梯度下降方法、学习率、衰减率等等。
在这里插入图片描述

代码如下(示例):

class Config(object):num_classes = 2loss = 'softmax' #focal_losstest_root = 'gender_data/'test_list = 'gender_data/val.txt'train_batch_size = 16      # batch sizetrain_root = 'gender_data/'train_list = 'gender_data/train.txt'finetune = Falseload_model_path  = 'checkpoints/model-epoch-1.pth'save_interval = 1input_shape = (3, 112, 112)optimizer = 'sgd'            # optimizer should be sgd, adamnum_workers = 4              # how many workers for loading dataprint_freq = 10             # print info every N batchmilestones = [60, 100]  # adjust lr lr = 0.1         # initial learning ratemax_epoch = 100   # max epochlr_decay = 0.95  # when val_loss increase, lr = lr*lr_decayweight_decay = 5e-4

三、定义resnet网络

实际上resnet网络pytorch内部经典网络中已存在,但作者还是参考开源代码自己构建了一个resnet网络的py文件resnet.py。这个可直接拿来使用。本次训练使用的是resnet18.
代码如下(示例):

"""resnet in pytorch[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.Deep Residual Learning for Image Recognitionhttps://arxiv.org/abs/1512.03385v1
"""import torch
import torch.nn as nnclass Flatten(nn.Module):def forward(self, input):#print(input.view(input.size(0), -1).shape)return input.view(input.size(0), -1)class BasicBlock(nn.Module):"""Basic Block for resnet 18 and resnet 34"""expansion = 1def __init__(self, in_channels, out_channels, stride=1):super().__init__()#residual functionself.residual_function = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels * BasicBlock.expansion))#shortcutself.shortcut = nn.Sequential()#the shortcut output dimension is not the same with residual function#use 1*1 convolution to match the dimensionif stride != 1 or in_channels != BasicBlock.expansion * out_channels:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * BasicBlock.expansion))def forward(self, x):return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))class BottleNeck(nn.Module):"""Residual block for resnet over 50 layers"""expansion = 1def __init__(self, in_channels, out_channels, stride=1):super().__init__()self.residual_function = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),nn.BatchNorm2d(out_channels * BottleNeck.expansion),)self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels * BottleNeck.expansion:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),nn.BatchNorm2d(out_channels * BottleNeck.expansion))def forward(self, x):return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))class ResNet(nn.Module):def __init__(self, block, num_block, scale=0.25, num_classes=2):super().__init__()self.in_channels = int(64 * scale)self.conv1 = nn.Sequential(nn.Conv2d(3, int(64 * scale), kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(int(64 * scale)),nn.ReLU(inplace=True))#we use a different inputsize than the original paper#so conv2_x's stride is 1self.conv2_x = self._make_layer(block, int( 64 * scale), num_block[0], 2)self.conv3_x = self._make_layer(block, int(128 * scale), num_block[1], 2)self.conv4_x = self._make_layer(block, int(256 * scale), num_block[2], 2)self.conv5_x = self._make_layer(block, int(512 * scale), num_block[3], 2)self.output = nn.Sequential(nn.Conv2d(int(512*scale), int(512*scale), kernel_size=(7, 7), stride=1, groups=int(512*scale), bias=False),nn.BatchNorm2d(int(512*scale)),Flatten(),#nn.Linear(int(32768 * scale), num_classes)nn.Linear(int(512 * scale), num_classes))def _make_layer(self, block, out_channels, num_blocks, stride):"""make resnet layers(by layer i didnt mean this 'layer' was the same as a neuron netowork layer, ex. conv layer), one layer may contain more than one residual block Args:block: block type, basic block or bottle neck blockout_channels: output depth channel number of this layernum_blocks: how many blocks per layerstride: the stride of the first block of this layerReturn:return a resnet layer"""# we have num_block blocks per layer, the first block # could be 1 or 2, other blocks would always be 1strides = [stride] + [1] * (num_blocks - 1)layers = []for stride in strides:layers.append(block(self.in_channels, out_channels, stride))self.in_channels = out_channels * block.expansionreturn nn.Sequential(*layers)def forward(self, x):output = self.conv1(x)output = self.conv2_x(output)output = self.conv3_x(output)output = self.conv4_x(output)output = self.conv5_x(output)output = self.output(output)return output def resnet18():""" return a ResNet 18 object"""return ResNet(BasicBlock, [2, 2, 2, 2])def resnet34():""" return a ResNet 34 object"""return ResNet(BasicBlock, [3, 4, 6, 3])def resnet50():""" return a ResNet 50 object"""return ResNet(BottleNeck, [3, 4, 6, 3])def resnet101():""" return a ResNet 101 object"""return ResNet(BottleNeck, [3, 4, 23, 3])def resnet152():""" return a ResNet 152 object"""return ResNet(BottleNeck, [3, 8, 36, 3])from thop import profile
from thop import clever_format
if __name__=='__main__':input = torch.Tensor(1, 3, 112, 112)model = resnet18()#print(model)flops, params = profile(model, inputs=(input, ))flops, params = clever_format([flops, params], "%.3f")#print(model)print('VoVNet Flops:', flops, ',Params:' ,params)

四、train.py训练

训练代码及书写逻辑也是个常规操作,很好理解,关键点在于如何去加载数据,并做预处理变换。
代码如下(示例),仅供参考:

import torch
from torch.utils import data
import os
import time
import numpy as np
from models.resnet import *   #resnet34
from models.mobilenetv2 import mobilenetv2
#from models.mobilenetv3 import *
#from models.repvgg import *
from data.dataset import Dataset
from config.config import Config
from loss.focal_loss import FocalLoss
from utils.cosine_lr_scheduler import CosineDecayLR 
#from torch.autograd import Variable
def train(model, criterion, optimizer, scheduler, trainloader, epoch):model.train()for ii, data in enumerate(trainloader):start = time.time()iters = epoch * len(trainloader) + iischeduler.step(iters + 1)data_input, label = data#print(data_input, label)#data_input, label = Variable(data_input), Variable(label)-1data_input = data_input.to(device)label = label.to(device).long()output = model(data_input)#print(output)#print(label)loss = criterion(output, label)optimizer.zero_grad()loss.backward()optimizer.step()if iters % opt.print_freq == 0:output = output.data.cpu().numpy()output = np.argmax(output, axis=1)label = label.data.cpu().numpy()acc = np.mean((output == label).astype(int))speed = opt.print_freq / (time.time() - start)time_str = time.asctime(time.localtime(time.time()))print(time_str, 'epoch', epoch, 'iters', iters, 'speed', speed, 'lr',optimizer.param_groups[0]['lr'], 'loss', loss.cpu().detach().numpy(), 'acc', acc)def eval_train(model, criterion, testloader):model.eval()test_loss = 0.0 # cost function errorcorrect = 0.0with torch.no_grad():for (datas, labels) in testloader:datas = datas.to(device)labels = labels.to(device).long()outputs = model(datas)loss = criterion(outputs, labels)test_loss += loss.item()_, preds = outputs.max(1)correct += preds.eq(labels).sum()print('Test set: Average loss: {:.4f}, Accuracy: {:.4f}'.format(test_loss / len(testloader),correct.float() / len(testloader)))if __name__ == '__main__':opt = Config()#os.environ['CUDA_VISIBLE_DEVICES'] = '0'#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = torch.device("cpu")test_dataset = Dataset(opt.test_root, opt.test_list, phase='test', input_shape=opt.input_shape)testloader = data.DataLoader(test_dataset,shuffle=False,pin_memory=True,num_workers=opt.num_workers)train_dataset = Dataset(opt.train_root, opt.train_list, phase='train', input_shape=opt.input_shape)trainloader = data.DataLoader(train_dataset,batch_size=opt.train_batch_size,shuffle=True,pin_memory=True,num_workers=opt.num_workers)if opt.loss == 'focal_loss':criterion = FocalLoss(gamma=2)else:criterion = torch.nn.CrossEntropyLoss()model = resnet18()#model = get_RepVGG_func_by_name('RepVGG-B0')#model = mobilenetv2()if opt.finetune == True:model.load_state_dict(torch.load(opt.load_model_path))model = torch.nn.DataParallel(model)model.to(device)total_batch = len(trainloader)NUM_BATCH_WARM_UP = total_batch * 5optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)scheduler = CosineDecayLR(optimizer,  opt.max_epoch * total_batch, opt.lr, 1e-6, NUM_BATCH_WARM_UP)print('{} train iters per epoch in dataset'.format(len(trainloader)))for epoch in range(0, opt.max_epoch):train(model, criterion, optimizer, scheduler, trainloader, epoch)if epoch % opt.save_interval == 0 or epoch == (opt.max_epoch - 1):torch.save(model.module.state_dict(), 'checkpoints/model-epoch-'+str(epoch) + '.pth')eval_train(model, criterion, testloader)

在这里插入图片描述
训练过程日志打印如下,最后的预测准确率还不错:
在这里插入图片描述

五、预测predict.py实现

代码如下(示例),仅供参考:

from torch.autograd import Variable
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt # plt 用于显示图片
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
from models.resnet import *
from config.config import Config
from models.mobilenetv2 import *def show_infer_result(result):font = ImageFont.truetype('data/font/HuaWenXinWei-1.ttf', 50)plt.rcParams['font.sans-serif'] = ['SimHei']  # 中文乱码plt.subplot(121)plt.imshow(image)plt.title('测试图片')#不显示坐标轴plt.axis('off')#子图2plt.subplot(122)img2_2 = cv2.imread('./test2.jpg')cv2img = cv2.cvtColor(img2_2, cv2.COLOR_BGR2RGB)img_PIL = Image.fromarray(cv2img)draw = ImageDraw.Draw(img_PIL)label = ''if result == 0:label = '女性'else:label = '男性'draw.text((170, 150), label, fill=(255, 0, 255), font=font, align='center')cheng = cv2.cvtColor(np.array(img_PIL), cv2.COLOR_RGB2BGR)plt.imshow(cheng)plt.title('预测结果')plt.axis('off')# #设置子图默认的间距plt.tight_layout()#显示图像plt.show()def model_infer(img, model_path):data_transforms = transforms.Compose([transforms.Resize([112, 112]),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])# net = resnet18().cuda().eval()            # 实例化自己的模型;net = resnet18().eval()  # resnet模型net.load_state_dict((torch.load(model_path)), False)imgblob = data_transforms(img).unsqueeze(0).type(torch.FloatTensor).cpu()#print(imgblob)imgblob = Variable(imgblob)torch.no_grad()output = net(imgblob)_, pred = output.max(1)# print("output ---> ",output)predict_result = pred.numpy()show_infer_result(predict_result)return predict_resultif __name__ == "__main__":imagepath = './gender_data/val/1/14901.png'image = Image.open(imagepath)model_path = "./checkpoints/model-epoch-99.pth"model_infer(image, model_path)print("====infer over!")

六、预测结果

女性图片测试
在这里插入图片描述
男性图片测试
在这里插入图片描述

七、完整项目代码+数据集(大于1500张)

准备做与其他几个网络的对比实验,如mobilenetv2 、mobilenetv3、repvgg,做完后,再一并贴上。
觉得有用的,感谢先点赞+收藏+关注吧,
如何快速搭建神经网络并训练,请参考另外博客:五步教你使用Pytorch搭建神经网络并训练


总结

本文属于使用resnet网络+pytorch深度学习框架,实现男女性别识别分类模型的训练+预测,当然还包括了分类数据集制作,公开了项目部分代码仅供参考学习,后续会补上多组对比实验和代码模型。敬请关注!

相关内容

热门资讯

兴业银行厦门分行精准落地外汇便... 深化跨境投融资外汇管理改革、服务实体经济高质量发展是当前金融工作的重要导向。兴业银行厦门分行主动响应...
盗刷他人医保账户购药,广东高院... 12月30日,广东省高级人民法院发布3起医保骗保犯罪典型案例,涉及盗刷他人医保账户购药、冒名骗保倒卖...
原创 电... 23.14亿元索赔额度,相当于欣旺达2023年和2024年扣非归母净利润总和近九成 投资时间网、...
政策+技术双轮驱动,这个板块连... 随着全球贸易一体化加速和数字经济蓬勃发展,跨境支付已从外贸行业的“配套服务”升级为驱动全球经济循环的...
永吉法院:法官多方寻踪化纠纷,... 正义之声网讯 (永吉法院 车美静)在日常生活中,民间借贷作为亲友间常见的经济互助形式,却常因还款问题...
永吉法院:调解化纠纷 为企业发... 正义之声网讯 (永吉法院 刘洋)近日,永吉县人民法院岔路河法庭成功调解一起公路货物运输合同纠纷案件,...
明确了!化妆、医药、饮料业这一... 化妆、医药和饮料制造业迎来利好政策。 近日,财政部、税务总局发布《关于广告费和业务宣传费支出税前扣除...
货拉拉:取消车贴违约金制度、解... IT之家 12 月 30 日消息,货拉拉、滴滴送货、快狗打车、满帮集团等四家互联网道路货运平台企业在...
不到一个月被告一千多次 绿地控... 12月30日,绿地控股(600606)发布公告,公司及控股子公司在2025年12月3日至12月27日...