在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

| 参数名称 | 描述 |
|---|---|
| bootstrap.servers | 生产者连接集群所需的broker地址清单 。 例如:hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置1个或者多个,中间用逗号隔开。注意这里并非需要所有的broker地址,因为生产者可以从给定的broker里可以查找到其他broker信息。 |
| key.serializer 和 value.serializer | 指定发送消息的 key 和 value 的序列化类型。一定要写全类名。 |
| buffer.memory | RecordAccumulator 缓冲区总大小,默认 32m。 |
| batch.size | 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。 |
| linger.ms | 如果数据迟迟未达到batch.size,sender 等待 linger.time之后就会发送数据。单位ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。 |
| acks | 0:生产者发送过来的数据,不需要等数据落盘应答。1:生产者发送过来的数据,Leader 收到数据后应答。-1(all):生产者发送过来的数据,Leader和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。 |
| max.in.flight.requests.per.connection | 允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。 |
| retries | 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。 |
| retry.backoff.ms | 两次重试之间的时间间隔,默认是 100ms。 |
| enable.idempotence | 是否开启幂等性,默认 true,开启幂等性。 |
| compression.type | 生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd。 |
1.需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker
2.代码编写
(1)导入依赖
org.apache.kafka kafka-clients 3.0.0
(2)编写不带回调函数的 API 代码
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;public class producer {public static void main(String[] args) {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializer
// properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer kafkaProducer = new KafkaProducer<>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) { kafkaProducer.send(new ProducerRecord<>("first","kafka" + i));}// 5. 关闭资源kafkaProducer.close();}
}
3.测试:
(1)在 hadoop102 上开启 Kafka 消费者。
[root@hadoop102 kafka_2.12-3.0.0]# bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
(2)在 IDEA 中执行代码,观察 hadoop102 控制台中接收的消息。
kafka0
kafka1
kafka2
kafka3
kafka4
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;
public class CustomProducerCallback {public static void main(String[] args) throws InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer kafkaProducer = new KafkaProducer<>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 添加回调kafkaProducer.send(new ProducerRecord<>("first", "kafka" + i), new Callback() {// 该方法在 Producer 收到 ack 时调用,为异步调用@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {// 没有异常,输出信息到控制台System.out.println(" 主题: " + metadata.topic() + "->" + "分区:" + metadata.partition());} else {// 出现异常打印exception.printStackTrace();}}});// 延迟一会看到数据发往不同分区Thread.sleep(2);}// 5. 关闭资源kafkaProducer.close();}
}
1.观察 hadoop102 控制台中接收的消息。
kafka0
kafka1
kafka2
kafka3
kafka4
2.在 IDEA 控制台观察回调信息。主题: first->分区:0主题: first->分区:0主题: first->分区:0主题: first->分区:1主题: first->分区:1
只需在异步发送的基础上,再调用一下 get()方法即可。
kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();
(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
(2)提高并行度,生产者以分区为单位发送数据;消费者以分区为单位进行消费数据。

/*The default partitioning strategy:(默认的分区策略:)
If a partition is specified in the record, use it(如果记录中指定了分区,则使用它)
If no partition is specified but a key is present choose a partition based on a hash of the key(如果没有指定分区但有一个key,则根据key的散列选择一个分区)
If no partition or key is present choose the sticky partition that changes when the batch is full. (如果不存在分区或key,则选择在批处理满时更改的粘性分区。)
See KIP-480 for details about sticky partitioning.(有关粘性分区的详细信息,请参见KIP-480。)
*/
public class DefaultPartitioner implements Partitioner {}
//(1)指明partition的情况下,直接将指明的值作为partition值;例如:partition=0,所有数据写入分区0。
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value, Iterable headers) {}
public ProducerRecord(String topic, Integer partition, Long timestamp, K key, V value){}
public ProducerRecord(String topic, Integer partition, K key, V value, Iterable headers) {}
public ProducerRecord(String topic, Integer partition, K key, V value) {}
//(2)没有指明partition值但有key的情况下,将key的hash值与topic的partition总数进行取余得到partition值;例如:key1的hash值=5, key2的hash值=6 ,topic的partition总数=2,那么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。
public ProducerRecord(String topic, K key, V value) {}
//(3)既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)。例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到,Kafka再随机一个分区进行使用(如果还是0会继续随机)。
public ProducerRecord(String topic, V value) {}
将数据发往指定 partition 的情况下,例如:将所有数据发往分区 1 中。
public class CustomProducerCallbackPartitions {public static void main(String[] args) throws InterruptedException {// 0 配置Properties properties = new Properties();// 连接集群 bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");// 指定对应的key和value的序列化类型 key.serializer
// properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 1 创建kafka生产者对象// "" helloKafkaProducer kafkaProducer = new KafkaProducer<>(properties);// 2 发送数据for (int i = 0; i < 5; i++) {// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)kafkaProducer.send(new ProducerRecord<>("first", 1, "", "hello " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {System.out.println("主题: " + metadata.topic() + "->分区:" + metadata.partition());}}});Thread.sleep(2);}// 3 关闭资源kafkaProducer.close();}
}
①在 hadoop102 上开启 Kafka 消费者。
[root@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
②在 IDEA 中执行代码,观察 hadoop102 控制台中接收的消息。
[root@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
hello 0
hello 1
hello 2
hello 3
hello 4
③在 IDEA 控制台观察回调信息。
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
没有指明 partition 值,但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 总数进行取余得到 partition 值。
public class CustomProducerCallback {public static void main(String[] args) throws InterruptedException {// 0 配置Properties properties = new Properties();// 连接集群 bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");// 指定对应的key和value的序列化类型 key.serializer
// properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());// 1 创建kafka生产者对象// "" helloKafkaProducer kafkaProducer = new KafkaProducer<>(properties);// 2 发送数据for (int i = 0; i < 500; i++) {// 依次指定 key 值为 a,b,f ,数据 key 的 hash 值与 3 个分区求余,分别发往 1、2、0kafkaProducer.send(new ProducerRecord<>("first", "a", "hello " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null){System.out.println("主题: "+metadata.topic() + "->分区:"+ metadata.partition());}}});Thread.sleep(2);}// 3 关闭资源kafkaProducer.close();}
}
①key="a"时,在控制台查看结果。
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1
②key="b"时,在控制台查看结果。
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
主题:first->分区:2
③key="f"时,在控制台查看结果。
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
如果研发人员可以根据企业需求,自己重新实现分区器。
- 需求
实现一个分区器实现,发送过来的数据中如果包含 hello,就发往 0 号分区,不包含 hello,就发往 1 号分区。- 实现步骤
(1)定义类实现 Partitioner 接口。
(2)重写 partition()方法。
(3)使用分区器的方法,在生产者的配置中添加分区器参数。
/*** 1. 实现接口 Partitioner* 2. 实现 3 个方法:partition,close,configure* 3. 编写 partition 方法,返回分区号*/
public class MyPartitioner implements Partitioner {/*** 返回信息对应的分区* @param topic 主题* @param key 消息的 key* @param keyBytes 消息的 key 序列化后的字节数组* @param value 消息的 value* @param valueBytes 消息的 value 序列化后的字节数组* @param cluster 集群元数据可以查看分区信息* @return*/@Overridepublic int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {// 获取数据 helloString msgValues = value.toString();// 创建 partitionint partition;// 判断消息是否包含 helloif (msgValues.contains("hello")){partition = 0;}else {partition = 1;}// 返回分区号return partition;}// 关闭资源@Overridepublic void close() {}// 配置方法@Overridepublic void configure(Map configs) {}
}
public class CustomProducerCallbackPartitions {public static void main(String[] args) throws InterruptedException {// 0 配置Properties properties = new Properties();// 连接集群 bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");// 指定对应的key和value的序列化类型 key.serializer
// properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 关联自定义分区器properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.atguigu.kafka.producer.MyPartitioner");// 1 创建kafka生产者对象// "" helloKafkaProducer kafkaProducer = new KafkaProducer<>(properties);// 2 发送数据for (int i = 0; i < 5; i++) {// 指定数据发送到 1 号分区,key 为空(IDEA 中 ctrl + p 查看参数)kafkaProducer.send(new ProducerRecord<>("first", 1, "", "hello " + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {System.out.println("主题: " + metadata.topic() + "->分区: " + metadata.partition());}}});Thread.sleep(2);}// 3 关闭资源kafkaProducer.close();}
}
①在 hadoop102 上开启 Kafka 消费者。
[root@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
②在 IDEA 控制台观察回调信息。
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0
主题:first->分区:0