typedef struct {ngx_radix_node_t *root;ngx_pool_t *pool;ngx_radix_node_t *free;char *start;size_t size;
} ngx_radix_tree_t;
struct ngx_radix_node_s {ngx_radix_node_t *right;ngx_radix_node_t *left;ngx_radix_node_t *parent;uintptr_t value;
};
typedef struct {ngx_radix_node_t *root;ngx_pool_t *pool;ngx_radix_node_t *free;char *start;size_t size;
} ngx_radix_tree_t;
结构成员分析: 节点: value字段指向用户自定义的、有意义的数据结构 树 root 根节点 pool 内存池 free 已分配内存中还未使用内存的首地址 start 已分配内存中还未使用的内存大小 size 已分配内存中使用的内存大小 内存布局:
创建
ngx_radix_tree_t *ngx_radix_tree_create(ngx_pool_t *pool,ngx_int_t preallocate);{uint32_t key, mask, inc;ngx_radix_tree_t *tree;tree = ngx_palloc(pool, sizeof(ngx_radix_tree_t));if (tree == NULL) {return NULL;tree->pool = pool;tree->free = NULL;tree->start = NULL;tree->size = 0;tree->root = ngx_radix_alloc(tree);if (tree->root == NULL) {return NULL;}tree->root->right = NULL;tree->root->left = NULL;tree->root->parent = NULL;tree->root->value = NGX_RADIX_NO_VALUE;//只创建结构体ngx_radix_tree_t,没有创建任何基数树节点*if (preallocate == 0) {return tree;}}
//根据下面的情况创建基数树节点*
f (preallocate == -1) {switch (ngx_pagesize / sizeof(ngx_radix_node_t)) {/* amd64 */case 128:preallocate = 6;break;/* i386, sparc64 */case 256:preallocate = 7;break;/* sparc64 in 32-bit mode */default:preallocate = 8;}}
mask = 0;inc = 0x80000000;while (preallocate--) {key = 0;mask >>= 1;mask |= 0x80000000;do {if (ngx_radix32tree_insert(tree, key, mask, NGX_RADIX_NO_VALUE)!= NGX_OK){return NULL;}key += inc;//当preallocate=0时,是最后一层,构建的节点个数为2^preallocate} while (key);inc >>= 1;}return tree;
} 函数解析: 1.pool是内存池指针 preallocate:预分配的基数树节点树 如果传递的值为-1,那么将会根据当前操作系统中一个页面的大小来预分配基数树节点 2 #define NGX_RADIX_NO_VALUE (uintptr_t) -1
3.
* amd64上的6位(64位平台和4K页面)
* i386上的7位(32位平台和4K页面)
* 64位模式下sparc64上的7个比特位(8K页)
* 32位模式下sparc64上的8个比特位(8K页)
if (preallocate == -1) {switch (ngx_pagesize / sizeof(ngx_radix_node_t)) {/* amd64 */case 128:preallocate = 6;break;/* i386, sparc64 */case 256:preallocate = 7;break;/* sparc64 in 32-bit mode */default:preallocate = 8;}}
3.循环如下:
//加入preallocate=7,最终建的基数树的节点总个数为2^(preallocate+1)-1,每一层个数为2^(7-preallocate)//循环如下://preallocate = 7 6 5 4 3 2 1//mask(最左8位)= 10000000 11000000 11100000 11110000 11111000 11111100 11111110//inc = 10000000 01000000 00100000 00010000 00001000 00000100 00000010//增加节点个数 = 2 4 8 16 32 64 128 nginx的基数树只处理key值为整形的情况,所以每个整形被转化为二进制数,并且树的最大深度是32层。根据二进制位数从左到右,如果当前位为1,就向右子树,否则向左子树插入。当然有时候我们不想构建深度为32的基数树,nginx为此提供了一个掩码mask,这个掩码中1的个数决定了基数树的深度。
ngx_int_t
ngx_radix32tree_insert(ngx_radix_tree_t *tree, uint32_t key, uint32_t mask,uintptr_t value)
{uint32_t bit;ngx_radix_node_t *node, *next;bit = 0x80000000;从最左位开始,判断key
//10000000000000000000000000000000node = tree->root;next = tree->root;
//32位 一位一位来
//1->right
//0->leftwhile (bit & mask) {if (key & bit) {next = node->right;} else { next = node->left;}if (next == NULL) {break;}bit >>= 1;node = next;}
//判断是否初始化(是否为空)if (next) {if (node->value != NGX_RADIX_NO_VALUE) {return NGX_BUSY;}node->value = value;return NGX_OK;}//如果next为中间节点,且为空,继续查找且申请路径上为空的节点//比如找key=1000111,在找到10001时next为空,那要就要申请三个节点分别存10001,100011,1000111,
//1000111最后一个节点为key要插入的节点while (bit & mask) {next = ngx_radix_alloc(tree);if (next == NULL) {return NGX_ERROR;}next->right = NULL;next->left = NULL;next->parent = node;next->value = NGX_RADIX_NO_VALUE;if (key & bit) {node->right = next;} else {node->left = next;}bit >>= 1;node = next;}node->value = value;return NGX_OK;
} 删除一个节点和插入节点的操作几乎一样,不过要注意两点:
1)如果删除的是叶子节点,直接从基数树中删除,并把这个节点放入free链表
2)如果不是叶子节点,把value值置为NGX_RADIX_NO_VALUE
ngx_int_t
ngx_radix32tree_delete(ngx_radix_tree_t *tree, uint32_t key, uint32_t mask)
{uint32_t bit;ngx_radix_node_t *node;bit = 0x80000000;node = tree->root;//根据key和掩码查找while (node && (bit & mask)) {if (key & bit) {node = node->right;} else {node = node->left;}bit >>= 1;}if (node == NULL) {//没有找到return NGX_ERROR;}//node不为叶节点直接把value置为空if (node->right || node->left) {if (node->value != NGX_RADIX_NO_VALUE) {//value不为空node->value = NGX_RADIX_NO_VALUE;//置空valuereturn NGX_OK;}return NGX_ERROR;//value为空,返回error}//node为叶子节点,直接放到free区域for ( ;; ) {//删除叶子节点if (node->parent->right == node) {node->parent->right = NULL;//} else {node->parent->left = NULL;}//把node链入free链表node->right = tree->free;//放到free区域tree->free = node;//free指向node//假如删除node以后,父节点是叶子节点,就继续删除父节点,//一直到node不是叶子节点node = node->parent;if (node->right || node->left) {//node不为叶子节点break;}if (node->value != NGX_RADIX_NO_VALUE) {//node的value不为空break;}if (node->parent == NULL) {//node的parent为空break;}}return NGX_OK;
} 查找
这个函数是这四个函数中最简单的一个,就是根据key值查询,如果找到返回value值,没有找到返回NGX_RADIX_NO_VALUE。
uintptr_t
ngx_radix32tree_find(ngx_radix_tree_t *tree, uint32_t key)
{uint32_t bit;uintptr_t value;ngx_radix_node_t *node;bit = 0x80000000;value = NGX_RADIX_NO_VALUE;node = tree->root;while (node) {if (node->value != NGX_RADIX_NO_VALUE) {value = node->value;}if (key & bit) {node = node->right;} else {node = node->left;}bit >>= 1;//往下层查找}return value;
} 申请节点
ngx_radix_alloc为基数树申请节点:
1)如果free链表不为空,直接从上面取下一个空闲节点
2)free链表为空,则申请一个节点
static void *
ngx_radix_alloc(ngx_radix_tree_t *tree)
{char *p;if (tree->free) {//如果free中有可利用的空间节点p = (char *) tree->free;//指向第一个可利用的空间节点tree->free = tree->free->right;//修改freereturn p;}if (tree->size < sizeof(ngx_radix_node_t)) {//如果空闲内存大小不够分配一个节点就申请一页大小的内存tree->start = ngx_pmemalign(tree->pool, ngx_pagesize, ngx_pagesize);if (tree->start == NULL) {return NULL;}tree->size = ngx_pagesize;//修改空闲内存大小}//分配一个节点的空间p = tree->start;tree->start += sizeof(ngx_radix_node_t);tree->size -= sizeof(ngx_radix_node_t);return p;
}